Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros










Intervalo de año de publicación
1.
Prog Biophys Mol Biol ; 189: 13-25, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38593905

RESUMEN

Dysregulation of long non-coding RNA (lncRNA) HOXA-AS3 has been shown to contribute to the development of multiple cancer types. Several studies have presented the tumour-modulatory role or prognostic significance of this lncRNA in various kinds of cancer. Overall, HOXA-AS3 can act as a competing endogenous RNA (ceRNA) that inhibits the activity of seven microRNAs (miRNAs), including miR-29a-3p, miR-29 b-3p, miR-29c, miR-218-5p, miR-455-5p, miR-1286, and miR-4319. This relieves the downstream messenger RNA (mRNA) targets of these miRNAs from miRNA-mediated translational repression, allowing them to exert their effect in regulating cellular activities. Examples of the pathways regulated by lncRNA HOXA-AS3 and its associated downstream targets include the WNT/ß-catenin and epithelial-to-mesenchymal transition (EMT) activities. Besides, HOXA-AS3 can interact with other cellular proteins like homeobox HOXA3 and HOXA6, influencing the oncogenic signaling pathways associated with these proteins. Generally, HOXA-AS3 is overexpressed in most of the discussed human cancers, making this lncRNA a potential candidate to diagnose cancer or predict the clinical outcomes of cancer patients. Hence, targeting HOXA-AS3 could be a new therapeutic approach to slowing cancer progression or as a potential biomarker and therapeutic target. A drawback of using lncRNA HOXA-AS3 as a biomarker or therapeutic target is that most of the studies that have reported the tumour-regulatory roles of lncRNA HOXA-AS3 are single observational, in vitro, or in vivo studies. More in-depth mechanistic and large-scale clinical trials must be conducted to confirm the tumour-modulatory roles of lncRNA HOXA-AS3 further. Besides, no lncRNA HOXA-AS3 inhibitor has been tested preclinically and clinically, and designing such an inhibitor is crucial as it may potentially slow cancer progression.

2.
Life Sci ; 347: 122609, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580197

RESUMEN

LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-ß pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.


Asunto(s)
Quinasas Lim , Neoplasias , Humanos , Quinasas Lim/metabolismo , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Animales , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Quinasas Asociadas a rho/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37755545

RESUMEN

The prevalence of type 2 diabetes mellitus (T2DM) is alarming because it is always linked to the increase in chronic diseases, mortality, and socioeconomic burden. Water kefir has a wide range of functional and probiotic characteristics attributed to the microorganisms present in the kefir grains. The present study aims to evaluate the in vivo anti-diabetic potential of the isolated Lactobacillus paracasei from Malaysian water kefir grains (MWKG) which was reported to have excellent probiotic properties and high antioxidant activities as reported previously. High-fat diet/streptozotocin (HFD/STZ) induction was used to obtain a T2DM model followed by treatment with the isolated L. paracasei from MWKG. The levels of glucose, insulin, and in vivo liver antioxidants were quantified after 14 weeks. Gene expression analysis of the liver was also carried out using microarray analysis, and several genes were selected for validation using quantitative real-time PCR. Insulin tolerance test demonstrated that the L. paracasei isolated from the MWKG alleviated T2DM by improving the area under the curve of the insulin tolerance test whereby low-dose and high-dose concentrations treated groups showed 2424.50 ± 437.02 mmol/L·min and 2017.50 ± 347.09 mmol/L·min, respectively, compared to untreated diabetic mice which was 3884.50 ± 39.36 mmol/L·min. Additionally, treatment with the isolated L. paracasei from MWKG regulated the expression of several genes related to glucose homeostasis and lipid metabolism in diabetic mice. These results suggested that the isolated L. paracasei from MWKG could be a potential dietary supplement for T2DM.

4.
Front Psychol ; 14: 1152002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397314

RESUMEN

Introduction: Despite the availability of validated psychometrics tools to assess depression, there has not been any validated and reliable tool established to test perceived stress among Sri Lankans. The objective of this study is to test the validity and reliability of the Sinhalese Version of the Sheldon Cohen Perceived Stress Scale. Materials and methods: Standard and systematic procedures were adopted to translate the original English version of the Perceived Stress Scale-10 questionnaire into Sinhalese. Consecutive sampling was employed to recruit the Type 2 Diabetes mellitus (T2DM) sample (n = 321), and a convenient sampling was used to recruit the Age and Sex matched Healthy Controls (ASMHC) (n = 101) and the Healthy Community Controls (HCC) groups (n = 75). Cronbach alpha was used to assess internal consistency and reliability was determined using test-retest method utilizing Spearman's correlation coefficient. Sensitivity was evaluated by comparing the mean scores of the Sinhalese Perceived Stress Scale (S-PSS-10) and Sinhalese Patient Health Questionnaire (S-PHQ-9) scores. Post-hoc comparisons were done using Bonferroni's method. Mean scores were compared between the T2DM, ASMHC, and HCC groups using the independent t-test. Explanatory Factor Analysis (EFA) was conducted using the principal component and Varimax rotation while the Confirmatory Factor Analysis (CFA) was performed to assess the goodness-of-fit of the factor structure extracted from the EFA. Concurrent validity was assessed using the Pearson correlation between the S-PSS-10 and Patient Health Questionnaire measured by S-PHQ-9 (p < 0.05). Results: Cronbach alpha values of the three groups T2DM, ASMHC and HCC were 0.85, 0.81, and 0.79, respectively. Results of the ANOVA test suggested that there was a significant difference in the mean scores between groups (p < 0.00). EFA analysis revealed the existence of two factors with eigenvalues greater than 1.0. The factor loadings for the items ranged from 0.71-0.83. The CFA analysis demonstrated a good model fit for the two-factor model S-PSS-10. The S-PSS-10 significantly correlated with S-PHQ-9, indicating an acceptable concurrent validity. Conclusion: Findings revealed that the S-PSS-10 questionnaire can be used to screen perceived stress among the majority of the Sri Lankan Sinhalese-speaking population specially with chronic illnesses. Further studies with higher sample sizes across different populations would enhance the validity and reliability of S-PSS-10.

5.
Toxicology ; 495: 153596, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37480978

RESUMEN

Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κß), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Receptores de Hidrocarburo de Aril , Humanos , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular , Citocromo P-450 CYP1A1/genética , Factores Biológicos , Carcinogénesis
6.
Methods Mol Biol ; 2649: 175-194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258862

RESUMEN

The Tapirus indicus, also known as Malayan tapir, has been listed as a rapidly declining animal species in the past decades, along with being declared and categorized as an endangered species by the International Union for Conservation of Nature (IUCN) 2016. This tapir species is geographically distributed across several countries in Southeast Asia such as Peninsular Malaysia, Indonesia (Sumatra), South Thailand, and Myanmar. Amongst these countries, the Peninsula Malaysia forest is recorded to contain the highest number of Malayan tapir population. Unfortunately, in the past decades, the population of Malayan tapirs has declined swiftly due to serious deforestation, habitat fragmentation, and heavy vehicle accidents during road crossings at forest routes. Concerned by this predicament, the Department of Wildlife and National Parks (DWNP) Peninsular Malaysia collaborated with a few local universities to conduct various studies aimed at increasing the population number of tapirs in Malaysia. Several studies were conducted with the aim of enhancing the well-being of tapirs in captivity. Veterinarians face problems when it comes to selecting healthy and suitable tapirs for breeding programs at conservation centers. Conventional molecular methods using high-throughput sequencing provides a solution in determining the health condition of Malayan tapirs using the Next-Generation Sequencing (NGS) technology. Unaware by most, gut microbiome plays an important role in determining the health condition of an organism by various aspects: (1) digestion control; (2) benefiting the immune system; and (3) playing a role as a "second brain." Commensal gut bacterial communities (microbiomes) are predicted to influence organism health and disease. Imbalance of unhealthy and healthy microbes in the gut may contribute to weight gain, high blood sugar, high cholesterol, and other disorders. In infancy, neonatal gut microbiomes are colonized with maternal and environmental flora, and mature toward a stable composition in two to three years. Interactions between the microorganism communities and the host allow for the establishment of microbiological roles. Identifying the core microbiome(s) are essential in the prediction of diseases and changes in environmental behavior of microorganisms. The dataset of 16S rRNA amplicon sequencing of Malayan tapir was deposited in the MG-RAST portal. Parameters such as quality control, taxonomic prediction (unknown and predicted), diversity (rarefaction), and diversity (alpha) were analyzed using sequencing approaches (Amplicon sequencing). Comparisons of parameters, according to the type of sequencing, showed significant differences, except for the prediction variable. In the Amplicon sequencing datasets, the parameters Rarefaction and Unknown had the highest correlation, while Alpha and Predicted had the lowest. Firmicutes, Bacteroidetes, Proteobacteria, Bacilli, and Bacteroidia were the most representative genera in Malayan tapir amplicon sequences, which indicated that most of the tapirs were healthy. However, continuous assessment to maintain the well-being of tapir for long term is still required. This chapter focuses on the introduction of 16S rRNA amplicon metagenomics in analyzing Malayan tapir gut microbiome dataset.


Asunto(s)
Especies en Peligro de Extinción , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Animales Salvajes , Secuenciación de Nucleótidos de Alto Rendimiento
7.
J Chin Med Assoc ; 86(4): 356-365, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36762931

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent cells derived from adult human tissues that have the ability to proliferate in vitro and maintain their multipotency, making them attractive cell sources for regenerative medicine. However, MSCs reportedly show limited proliferative capacity with inconsistent therapeutic outcomes due to their heterogeneous nature. On the other hand, induced pluripotent stem cells (iPSC) have emerged as an alternative source for the production of various specialized cell types via their ability to differentiate from all three primary germ layers, leading to applications in regenerative medicine, disease modeling, and drug therapy. Notably, iPSCs can differentiate into MSCs in monolayer, commonly referred to as induced mesenchymal stem cells (iMSCs). These cells show superior therapeutic qualities compared with adult MSCs as the applications of the latter are restricted by passage number and autoimmune rejection when applied in tissue regeneration trials. Furthermore, increasing evidence shows that the therapeutic properties of stem cells are a consequence of the paracrine effects mediated by their secretome such as from exosomes, a type of extracellular vesicle secreted by most cell types. Several studies that investigated the potential of exosomes in regenerative medicine and therapy have revealed promising results. Therefore, this review focuses on the recent findings of exosomes secreted from iMSCs as a potential noncell-based therapy.


Asunto(s)
Exosomas , Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Adulto , Humanos , Diferenciación Celular , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo
8.
Biochem Pharmacol ; 210: 115466, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36849065

RESUMEN

Eyes absent homolog 4 (EYA4) is a protein that regulates many vital cellular processes and organogenesis pathways. It possesses phosphatase, hydrolase, and transcriptional activation functions. Mutations in the Eya4 gene can cause sensorineural hearing loss and heart disease. In most non-nervous system cancers such as those of the gastrointestinal tract (GIT), hematological and respiratory systems, EYA4 acts as a putative tumor suppressor. However, in nervous system tumors such as glioma, astrocytoma, and malignant peripheral nerve sheath tumor (MPNST), it plays a putative tumor-promoting role. EYA4 interacts with various signaling proteins of the PI3K/AKT, JNK/cJUN, Wnt/GSK-3ß, and cell cycle pathways to exert its tumor-promoting or tumor-suppressing effect. The tissue expression level and methylation profiles of Eya4 can help predict the prognosis and anti-cancer treatment response among cancer patients. Targeting and altering Eya4 expression and activity could be a potential therapeutic strategy to suppress carcinogenesis. In conclusion, EYA4 may have both putative tumor-promoting and tumor-suppressing roles in different human cancers and has the potential to serve as a prognostic biomarker and therapeutic agent in various cancer types.


Asunto(s)
Neoplasias , Transactivadores , Humanos , Transactivadores/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Fosfatidilinositol 3-Quinasas/genética , Neoplasias/genética , Genes Supresores de Tumor
9.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674525

RESUMEN

Cancer recurrence and drug resistance following treatment, as well as metastatic forms of cancer, are trends that are commonly encountered in cancer management. Amidst the growing popularity of personalized medicine and targeted therapy as effective cancer treatment, studies involving the use of stem cells in cancer therapy are gaining ground as promising translational treatment options that are actively pursued by researchers due to their unique tumor-homing activities and anti-cancer properties. Therefore, this review will highlight cancer interactions with commonly studied stem cell types, namely, mesenchymal stroma/stem cells (MSC), induced pluripotent stem cells (iPSC), iPSC-derived MSC (iMSC), and cancer stem cells (CSC). A particular focus will be on the effects of paracrine signaling activities and exosomal miRNA interaction released by MSC and iMSCs within the tumor microenvironment (TME) along with their therapeutic potential as anti-cancer delivery agents. Similarly, the role of exosomal miRNA released by CSCs will be further discussed in the context of its role in cancer recurrence and metastatic spread, which leads to a better understanding of how such exosomal miRNA could be used as potential forms of non-cell-based cancer therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Células Madre Neoplásicas , Microambiente Tumoral
10.
Front Endocrinol (Lausanne) ; 13: 1028846, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36479211

RESUMEN

The paradoxical action of insulin on hepatic glucose metabolism and lipid metabolism in the insulin-resistant state has been of much research interest in recent years. Generally, insulin resistance would promote hepatic gluconeogenesis and demote hepatic de novo lipogenesis. The underlying major drivers of these mechanisms were insulin-dependent, via FOXO-1-mediated gluconeogenesis and SREBP1c-mediated lipogenesis. However, insulin-resistant mouse models have shown high glucose levels as well as excess lipid accumulation. As suggested, the inert insulin resistance causes the activation of the FOXO-1 pathway promoting gluconeogenesis. However, it does not affect the SREBP1c pathway; therefore, cells continue de novo lipogenesis. Many hypotheses were suggested for this paradoxical action occurring in insulin-resistant rodent models. A "downstream branch point" in the insulin-mediated pathway was suggested to act differentially on the FOXO-1 and SREBP1c pathways. MicroRNAs have been widely studied for their action of pathway mediation via suppressing the intermediate protein expressions. Many in vitro studies have postulated the roles of hepato-specific expressions of miRNAs on insulin cascade. Thus, miRNA would play a pivotal role in selective hepatic insulin resistance. As observed, there were confirmations and contradictions between the outcomes of gene knockout studies conducted on selective hepatic insulin resistance and hepato-specific miRNA expression studies. Furthermore, these studies had evaluated only the effect of miRNAs on glucose metabolism and few on hepatic de novo lipogenesis, limiting the ability to conclude their role in selective hepatic insulin resistance. Future studies conducted on the role of miRNAs on selective hepatic insulin resistance warrant the understanding of this paradoxical action of insulin.


Asunto(s)
Resistencia a la Insulina , Hígado , MicroARNs , Animales , Ratones , Glucosa , Insulina , Resistencia a la Insulina/genética , MicroARNs/genética
11.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499713

RESUMEN

Detecting breast cancer (BC) at the initial stages of progression has always been regarded as a lifesaving intervention. With modern technology, extensive studies have unraveled the complexity of BC, but the current standard practice of early breast cancer screening and clinical management of cancer progression is still heavily dependent on tissue biopsies, which are invasive and limited in capturing definitive cancer signatures for more comprehensive applications to improve outcomes in BC care and treatments. In recent years, reviews and studies have shown that liquid biopsies in the form of blood, containing free circulating and exosomal microRNAs (miRNAs), have become increasingly evident as a potential minimally invasive alternative to tissue biopsy or as a complement to biomarkers in assessing and classifying BC. As such, in this review, the potential of miRNAs as the key BC signatures in liquid biopsy are addressed, including the role of artificial intelligence (AI) and machine learning platforms (ML), in capitalizing on the big data of miRNA for a more comprehensive assessment of the cancer, leading to practical clinical utility in BC management.


Asunto(s)
Neoplasias de la Mama , MicroARN Circulante , MicroARNs , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Biomarcadores de Tumor/genética , Inteligencia Artificial , MicroARNs/genética , Aprendizaje Automático
12.
Epigenet Insights ; 15: 25168657221130041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262691

RESUMEN

MicroRNA(miRNA)s have been identified as an emerging class for therapeutic interventions mainly due to their extracellularly stable presence in humans and animals and their potential for horizontal transmission and action. However, treating Type 2 diabetes mellitus using this technology has yet been in a nascent state. MiRNAs play a significant role in the pathogenesis of Type 2 diabetes mellitus establishing the potential for utilizing miRNA-based therapeutic interventions to treat the disease. Recently, the administration of miRNA mimics or antimiRs in-vivo has resulted in positive modulation of glucose and lipid metabolism. Further, several cell culture-based interventions have suggested beta cell regeneration potential in miRNAs. Nevertheless, few such miRNA-based therapeutic approaches have reached the clinical phase. Therefore, future research contributions would identify the possibility of miRNA therapeutics for tackling T2DM. This article briefly reported recent developments on miRNA-based therapeutics for treating Type 2 Diabetes mellitus, associated implications, gaps, and recommendations for future studies.

13.
Antioxidants (Basel) ; 11(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35624749

RESUMEN

The focus on managing Alzheimer's disease (AD) is shifting towards prevention through lifestyle modification instead of treatments since the currently available treatment options are only capable of providing symptomatic relief marginally and result in various side effects. Numerous studies have reported that the intake of fermented foods resulted in the successful management of AD. Food fermentation is a biochemical process where the microorganisms metabolize the constituents of raw food materials, giving vastly different organoleptic properties and additional nutritional value, and improved biosafety effects in the final products. The consumption of fermented foods is associated with a wide array of nutraceutical benefits, including anti-oxidative, anti-inflammatory, neuroprotective, anti-apoptotic, anti-cancer, anti-fungal, anti-bacterial, immunomodulatory, and hypocholesterolemic properties. Due to their promising health benefits, fermented food products have a great prospect for commercialization in the food industry. This paper reviews the memory and cognitive enhancement and neuroprotective potential of fermented food products on AD, the recently commercialized fermented food products in the health and food industries, and their limitations. The literature reviewed here demonstrates a growing demand for fermented food products as alternative therapeutic options for the prevention and management of AD.

14.
Pathol Res Pract ; 233: 153854, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35398617

RESUMEN

Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with higher risk of metastasis and cancer reoccurrence. Cisplatin is one of the potential anticancer drugs for treating TNBC, where its effectiveness remains challenged by frequent occurrence of cisplatin resistance. Since acquirement of drug resistance often being associated with presence of cancer stem cells (CSCs), investigation has been conducted, suggesting CSC-like subpopulation to be more resistant to cisplatin than their parental counterpart. On the other hand, plethora evidences showed the transmission of exosomal-miRNAs are capable of promoting drug resistance in breast cancers. In this study, we aim to elucidate the differential expression of exosomal-microRNAs profile and reveal the potential target genes in correlation to cisplatin resistance associated with CSC-like subpopulation by using TNBC cell line (MDA-MB-231). Utilizing next generation sequencing and Nanostring techniques, cisplatin-induced dysregulation of exosomal-miRNAs were evaluated in maximal for CSC-like subpopulation as compared to parental cells. Intriguingly, more oncogenic exosomal-miRNAs profile was detected from treated CSC-like subpopulation, which may correlate to enhancement of drug resistance and maintenance of CSCs. In treated CSC-like subpopulation, unique clusters of exosomal-miRNAs namely miR-221-3p, miR-196a-5p, miR-17-5p and miR-126-3p were predicted to target on six genes (ATXN1, LATS1, GSK3ß, ITGA6, JAG1 and MYC), aligned with previous finding which demonstrated dysregulation of these genes in treated CSC-like subpopulation. Our results highlight the potential correlation of exosomal-miRNAs and their target genes as well as novel perspectives of the corresponding pathways that may be essential to contribute to the attenuated cytotoxicity of cisplatin in CSC-like subpopulation.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Cisplatino/farmacología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
15.
Pathol Res Pract ; 230: 153745, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34953353

RESUMEN

The rapid development of small RNA and molecular biology research in the past 20 years has enabled scientists to discover many new miRNAs that are proven to play essential roles in regulating the development of different cancer types. Among these miRNAs, miR-1275 is one of the well-studied miRNAs that has been described to act as a tumour-promoting or tumour-suppressing miRNA in various cancer types. Even though miR-1275 has been widely reported in different original research articles on its roles in modulating the progression of different cancer types, however, there is scarce an in-depth review that could constructively summarize the findings from different studies on the regulatory roles of miR-1275 in different cancer types. To fill up this literature gap, therefore, this review was aimed to provide an overview and summary of the roles of miR-1275 in modulating the development of different cancers and to unravel the mechanism of how miR-1275 regulates cancer progression. Based on the findings summarized from various sources, it was found that miR-1275 plays a vital role in regulating various cellular signaling pathways like the PI3K/AKT, ERK/JNK, MAPK, and Wnt signaling pathways, and the dysregulation of this miRNA has been shown to contribute to the development of multiple cancer types such as cancers of the liver, breast, lung, gastrointestinal tract and genitourinary tract. Therefore, miR-1275 has great potential to be employed as a biomarker to diagnose cancer and to predict the prognosis of cancer patients. In addition, by inhibiting the expression of its unique downstream targets that are involved in regulating the mentioned cellular pathways, this miRNA could also be utilized as a novel therapeutic agent to halt cancer development.


Asunto(s)
Biomarcadores de Tumor/metabolismo , MicroARNs/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Animales , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Valor Predictivo de las Pruebas , Pronóstico , Transducción de Señal/efectos de los fármacos
16.
Artículo en Inglés | MEDLINE | ID: mdl-34712346

RESUMEN

Elephantopus scaber Linn, a traditional herb, exhibited anticancer properties, and it was cytotoxic against the monolayer estrogen receptor-positive breast cancer cell line, MCF-7, in the previous study. In order to determine the potential of E. scaber as a complementary medicine for breast cancer, this study aimed to evaluate the synergism between E. scaber and tamoxifen in cytotoxicity using MCF-7 in the form of 3-dimensional multicellular tumor spheroid (MCTS) cultures. MCTS represents a more reliable model for studying drug penetration as compared to monolayer cells due to its greater resemblance to solid tumor. Combination of E. scaber ethanol extract and tamoxifen, which were used in concentrations lower than their respective IC50 values, had successfully induced apoptosis on MCTS in this study. The combinatorial treatment showed >58% increase of lactate dehydrogenase release in cell media, cell cycle arrest at the S phase, and 1.3 fold increase in depolarization of mitochondrial membrane potential. The treated MCTS also experienced DNA fragmentation; this had been quantified by TUNEL-positive assay, which showed >64% increase in DNA damaged cells. Higher externalization of phospatidylserine and distorted and disintegrated spheroids stained by acridine orange/propidium iodide showed that the cell death was mainly due to apoptosis. Further exploration showed that the combinatorial treatment elevated caspases-8 and 9 activities involving both extrinsic and intrinsic pathways of apoptosis. The treatment also upregulated the expression of proapoptotic gene HSP 105 and downregulated the expression of prosurvival genes such as c-Jun, ICAM1, and VEGF. In conclusion, these results suggested that the coupling of E. scaber to low concentration of tamoxifen showed synergism in cytotoxicity and reducing drug resistance in estrogen receptor-positive breast cancer.

17.
BMC Complement Med Ther ; 21(1): 254, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620132

RESUMEN

BACKGROUND: Eucalyptol is an active compound of eucalyptus essential oil and was reported to have many medical attributes including cytotoxic effect on breast cancer cells. However, it has low solubility in aqueous solutions which limits its bioavailability and cytotoxic efficiency. In this study, nanostructured lipid carrier loaded with eucalyptol (NLC-Eu) was formulated and characterized and the cytotoxic effect of NLC-Eu towards breast cancer cell lines was determined. In addition, its toxicity in animal model, BALB/c mice was also incorporated into this study to validate the safety of NLC-Eu. METHODS: Eucalyptol, a monoterpene oxide active, was used to formulate the NLC-Eu by using high pressure homogenization technique. The physicochemical characterization of NLC-Eu was performed to assess its morphology, particle size, polydispersity index, and zeta potential. The in vitro cytotoxic effects of this encapsulated eucalyptol on human (MDA MB-231) and murine (4 T1) breast cancer cell lines were determined using the MTT assay. Additionally, acridine orange/propidium iodide assay was conducted on the NLC-Eu treated MDA MB-231 cells. The in vivo sub-chronic toxicity of the prepared NLC-Eu was investigated using an in vivo BALB/c mice model. RESULTS: As a result, the light, translucent, milky-colored NLC-Eu showed particle size of 71.800 ± 2.144 nm, poly-dispersity index of 0.258 ± 0.003, and zeta potential of - 2.927 ± 0.163 mV. Furthermore, the TEM results of NLC-Eu displayed irregular round to spherical morphology with narrow size distribution and relatively uniformed particles. The drug loading capacity and entrapment efficiency of NLC-Eu were 4.99 and 90.93%, respectively. Furthermore, NLC-Eu exhibited cytotoxic effects on both, human and mice, breast cancer cells with IC50 values of 10.00 ± 4.81 µg/mL and 17.70 ± 0.57 µg/mL, respectively at 72 h. NLC-Eu also induced apoptosis on the MDA MB-231 cells. In the sub-chronic toxicity study, all of the studied mice did not show any signs of toxicity, abnormality or mortality. Besides that, no significant changes were observed in the body weight, internal organ index, hepatic and renal histopathology, serum biochemistry, nitric oxide and malondialdehyde contents. CONCLUSIONS: This study suggests that the well-characterized NLC-Eu offers a safe and promising carrier system which has cytotoxic effect on breast cancer cell lines.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Eucaliptol/farmacología , Nanoestructuras/uso terapéutico , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Lípidos , Ratones , Ratones Endogámicos BALB C
18.
Pharmacol Res ; 172: 105818, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34400316

RESUMEN

Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.


Asunto(s)
Neoplasias Óseas/genética , Transición Epitelial-Mesenquimal , MicroARNs , Osteosarcoma/genética , Animales , Neoplasias Óseas/terapia , Humanos , Osteosarcoma/terapia
19.
Pathol Res Pract ; 225: 153565, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34333398

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two common betacoronaviruses, which are still causing transmission among the human population worldwide. The major difference between the two coronaviruses is that MERS-CoV is now causing sporadic transmission worldwide, whereas SARS-CoV-2 is causing a pandemic outbreak globally. Currently, different guidelines and reports have highlighted several diagnostic methods and approaches which could be used to screen and confirm MERS-CoV and SARS-CoV-2 infections. These methods include clinical evaluation, laboratory diagnosis (nucleic acid-based test, protein-based test, or viral culture), and radiological diagnosis. With the presence of these different diagnostic approaches, it could cause a dilemma to the clinicians and diagnostic laboratories in selecting the best diagnostic strategies to confirm MERS-CoV and SARS-CoV-2 infections. Therefore, this review aims to provide an up-to-date comparison of the advantages and limitations of different diagnostic approaches in detecting MERS-CoV and SARS-CoV-2 infections. This review could provide insights for clinicians and scientists in detecting MERS-CoV and SARS-CoV-2 infections to help combat the transmission of these coronaviruses.


Asunto(s)
COVID-19/diagnóstico , Diagnóstico Diferencial , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , SARS-CoV-2/patogenicidad , Sensibilidad y Especificidad , Humanos , Pandemias
20.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204873

RESUMEN

Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...